THE ACTION OF TWO METABOLITES OF VITAMIN D₃; 25,26-DIHYDROXYCHOLECALCIFEROL (25,26(OH)₂D₃) AND 24,25-DIHYDROXYCHOLECALCIFEROL (24,25(OH)₂D₃) ON BONE RESORPTION

M. PEACOCK and G. A. TAYLOR

M.R.C. Mineral Metabolism Unit, The General Infirmary, Leeds, LSI 3EX, England

and

J. REDEL

Institut de Rhumatologie - Centre de Recherches sur les Maladies Ostéo-Articulaires (U. 5 INSERM, ERA 377 CNRS) -Hôpital Cochin, 27 rue du Fg. St. Jacques, 75674 Paris Cédex 14, France

Received 9 January 1976

1. Introduction

In addition to the well known active metabolites of vitamin D₃, 25-OHD₃ and 1,25(OH)₂ D₃, two other dihydroxy derivatives of cholecalciferol have been isolated [1,2] from biological sources and identified [1-3] as 24,25- and 25,26(OH)₂D₃. Their chemical synthesis was described recently by one of us [4-7] and by others [8,9]. Unlike 25-OH-D₃ and 1,25 (OH)₂D₃, which act on gut and bone [10,11], the two other metabolites of cholecalciferol appeared to have a more selective activity. In vitamin D-deficient rats 24,25- and 25,26(OH)₂D₃-induced a stimulation of intestinal calcium transport but not of bone calcium mobilization [9,12]. Under slightly different conditions, however, larger doses of both metabolites caused an increase in bone resorption [13].

This apparent contradiction led us to investigate the action of 24,25- and $25,26(OH)_2D_3$ on bone resorption using a mouse bone culture system [14] and to establish the log-dose response curve of doses up to 600 ng/ml in terms of calcium, phosphate and hydroxy-proline release.

2. Methods

24,25(OH)₂D₃: The metabolite was prepared by

chemical synthesis as described elsewhere [4,6]. The compound is a mixture of diastereoisomeres 24 R and 24 S in approximately equal proportions.

25,26(OH)₂ D₃: The compound was prepared by chemical synthesis as described before [5,7] and consisted of a mixture of diasteroisomeres 25 R and 25 S in approximately equal proportions.

Bone culture: The methods are those described previously [14]. The calvaria from 5- to 7-day old mice are cultured in BGJ_b medium supplemented with 15% horse serum. After a 24 h equilibration period at 37°C in an atmosphere of 5% CO₂ 95% air, the medium is replaced by fresh medium, 2 ml/culture, which in the test vessels contain 25-OHD₃, 24,25 (OH)₂D₃ or 25,26(OH)₂D₃. The vitamin D metabolites are added to the culture medium dissolved in spectroscopic ethanol (0.01 μ l/2 ml medium). Each experiment contains a control, a high and low dose of 25-OHD₃ and at least 3 doses of 24,25(OH)₂D₃ or 25,26 (OH)₂D₃. The response to the metabolites is calculated as the mean change in medium calcium (7–10 calvaria) from the 7–10 control calvaria.

3. Results

There is a log-linear response in bone resorption to concentrations of 25-OHD₃ between 100 and 500

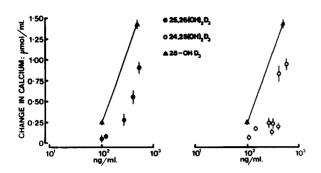


Fig. 1. The log-dose response curves of mouse calvaria in tissue culture to 25-OHD_3 (\blacktriangle), $25,26(OH)_2D_3$ (\spadesuit) and $24,25(OH)_2D_3$ (\diamondsuit). The data have been combined from several experiments and are expressed as the mean change in medium calcium, μ moles/ml \pm S.E.M., of the treated from the untreated calvaria.

ng/ml (fig.1). The metabolites $25,26(OH)_2D_3$ and $24,25(OH)_2D_3$ give a parallel response but at concentrations above 300 ng/ml (fig.1). A significant (p < 0.001) increase, however, in bone resorption was

given by 150 ng/ml of $24,25(OH)_2D_3$ whereas no response was seen with 123 ng/ml of $25,26(OH)_2D_3$. The change in medium calcium is associated with a corresponding change in medium phosphate (r = 0.99, p < 0.001) and hydroxyproline (r = 0.85, p < 0.001) and histology of treated calvaria showed an increase in resorption cavities as compared to control calvaria.

4. Discussion

The present results confirm that 25-OHD₃ at concentrations which are near to those found in human plasma, is very active in stimulating resorption in cultured bone [15,16]. The natural metabolites 24,25(OH)₂D₃ and 25,26(OH)₂D₃ present in plasma but at a lower concentration than 25-OHD₃, are also capable of resorbing bone. Both, however, are less potent than 25-OHD₃. Reynolds et al. [16] showed that 24,25(OH)₂D₃ did not resorb bone but concentrations higher than 50 ng/ml were not tested. The

Vit. D. metabolite	Concentration (ng/ml)	Change in calcium µmoles/ml (± 1 S.E.M.) Mean ± S.E.M. n			n
		Mean	I 3,E.M.	. 11	p
24,25(OH) ₂ D ₃	68	0.060	0.064	8	< 0.5
	75	0.061	0.054	8	<0.5
	110	0.025	0.043	8	< 0.5
	150	0.165	0.022	8	< 0.001
	270	0.230	0.065	8	< 0.01
	300	0.117	0.042	7	< 0.05
	300	0.235	0.066	8	< 0.05
	400	0.193	0.037	8	< 0.01
	500	0.835	0.095	8	< 0.001
	600	0.938	0.071	8	< 0.001
25,26(OH) ₂ D ₃	50	0.119	0.060	7	< 0.1
	100	0.020	0.043	8	< 0.5
	123	0.072	0.014	8	< 0.1
	300	0.269	0.077	7	< 0.01
	400	0.533	0.078	8	< 0.001
	518	0.905	0.064	8	< 0.001
25-OHD ₃	100	0.237	0.030	39	< 0.001
	500	1.445	0.054	40	< 0.001

p The p values give the significance of the difference from the controls (Students' t - test).

hydroxyl group at the 25 position is important in the bone resorbing activity of vitamin D. So far we have found no vitamin D analogue with a 25 hydroxyl group which is unable to resorb cultured bone (personal data). It is clear, however, that hydroxylation at other sites can decrease or increase the bone resorbing activity.

Acknowledgement

The 25-OHD₃ was a gift of Roussel UCLAF, Paris.

References

- Suda, T., Deluca, H. F., Schnoes, H. K., Tanaka, Y. and Holick, M. F. (1970) Biochemistry 9, 4776-4780.
- [2] Suda, T., Deluca, H. F., Schnoes, H. K., Ponchon, G., Tanaka, Y. and Holick, M. F. (1970) Biochemistry 9, 2917-2922.
- [3] Holick, M. F., Schnoes, H. K., Deluca, H. F., Gray, R. W., Boyle, I. T. and Suda, T. (1972) Biochemistry 11, 4251-4255.

- [4] Redel, J., Bell, P. A., Delbarre, F. and Kodicek, E. (1973)Ct. Rd. hebd. Seanc. Acad. Sci. Paris, 276 D, 2907-2910.
- [5] Redel, J., Bell, P. A., Delbarre, F. and Kodicek, E. (1974) Ct. Rd. hebd. Seanc. Acad. Sci. Paris, 278 D, 529-531.
- [6] Redel, J., Bell, P. A., Bazely, N., Calando, Y., Delbarre, F. and Kodicek, E. (1974) Steroids 24, 463-475.
- [7] Redel, J., Bell, P. A., Bazely, N., Calando, Y., Belbarre, F. and Kodicek, E. (1975) J. Steroid Biochem. 6, 117-119.
- [8] Lam, H.-Y., Schnoes, H. K., Deluca, H. F. and Chen, T. C. (1973) Biochemistry 12, 4851-4855.
- [9] Lam, H.-Y., Schnoes, H. K. and Deluca, H. F. (1975) Steroids 25, 247-256.
- [10] Blunt, J. W., Tanaka, Y. and Deluca, H. F. (1968) Proc. Nat. Acad. Sci. USA 61, 1503-1506.
- [11] Omdahl, J. L. and Deluca, H. F. (1973) Physiol. Rev. 53, 327-372.
- [12] Boyle, I. T., Omdahl, J. L., Gray, R. W. and Deluca, H. F. (1973) J. Biol. Chem. 248, 4174-4180.
- [13] Milhaud, G., Labat, M. L. and Redel, J. (1974) Ct. Rd. Hebd. Acad. Sci. Paris, 279 D, 827-830.
- [14] Webster, L. A., Atkins, D. and Peacock, M. (1974) J. Endocr., 62, 631-637.
- [15] Atkins, D. and Peacock, M. (1974) J. Endocr. 61, LXXIX-LXXX.
- [16] Reynolds, J. J., Holick, M. F. and Deluca, H. F. (1974) Calc. Tiss. Res. 15, 333-339.